

UNIVERSITY OF LIFE SCIENCES "KING MIHAI I" FROM TIMIŞOARA

"MULTIDISCIPLINARY CONFERENCE ON SUSTAINABLE DEVELOPMENT" 25 - 26 May 2023

"MULTIDISCIPLINARY CONFERENCE ON SUSTAINABLE DEVELOPMENT"

HYDROPONIC SCREENING OF SALIX ACCESSIONS WITH POTENTIAL FOR HEAVY METALS PHYTOREMEDIATION

BUZATU-GOANȚĂ (nee HERNEA) Cornelia¹, CORNEANU Mihaela^{1*}, BABEANU Cristina², **SOARE Rodica², IANCU Paula²**

¹University of Life Sciences "King Michael I" from Timisoara,, 109 Calea Aradului, Timisoara; Romania ²University of Craiova, Romania,, 13 A.I, Cuza Street, Craiova; Romania *micorneanu@yahoo.com, mihaela.corneanu@usab-tm.ro

Keyword: willow, heavy metals, hydroponic experiment, phytoremediation

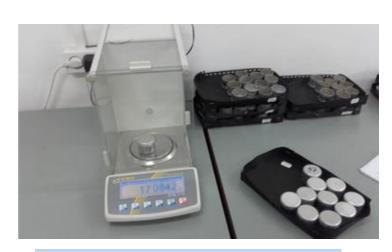
Introduction

The ability of plants to accumulate heavy metals differs according to species

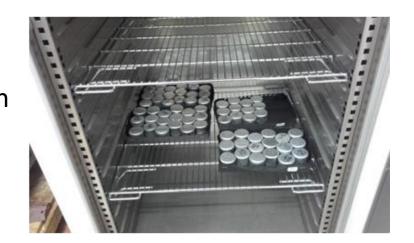
Willows are fast-growing species with a large capacity for sprouting and easy breeding, high transpiration rate, and a high potential for land reclamation. Native species of Salix were considered valuable sources of resistance genes in many breeding researches programs. Many investigated the growth performance of willow and their capability for phytoremediation. The aim of this study was to evaluate the potential of willow accessions to be used in land reclamation or as genitors in a breeding program.

	_				
Sf_P	S. fragilis				
Sf_B	S. fragilis				
Sp_P	S. pentandra				
St_P	S. triandra				
Cd_1		5 mg/l			
Cd_2		10 mg/l			
Cu_1		250 mg/l			
Cu_2		500 mg/l			
Ni_1		200 mg/l			
Ni_2		500 mg/l			
Pb_1		250 mg/l			
Pb_2		1000 mgl			
Control					

Material and method


Plants metabolic changes 5. high, leaves and green evaluated by were guaiacol-peroxidase and catalase activities

Vitality classes:


all necrotic; leaves necrotic and shoots partial

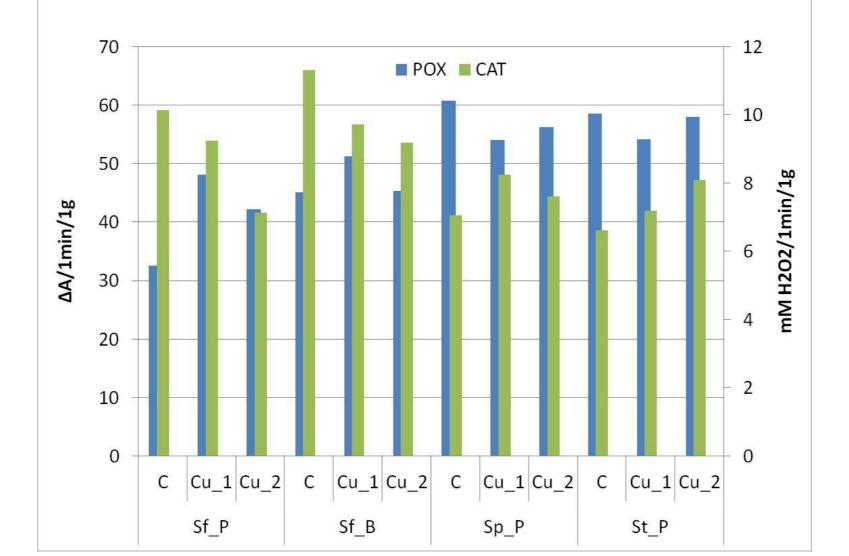
necrotic;

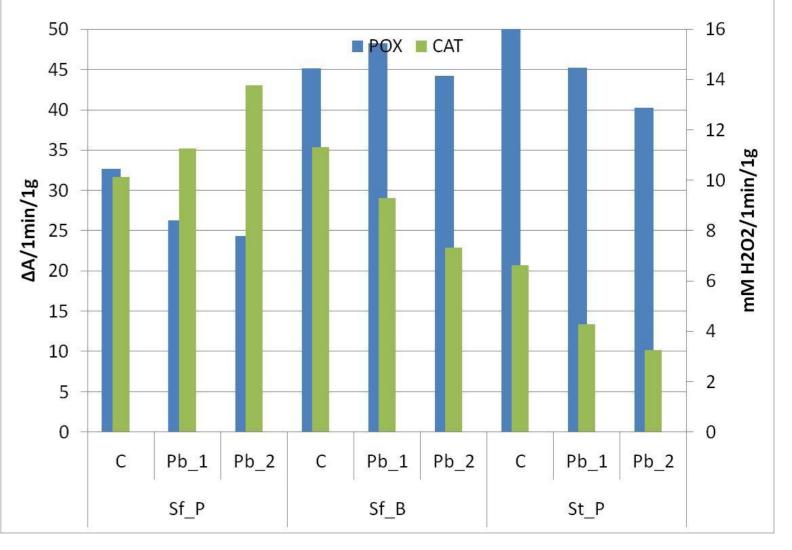
- low, leaves more than 50% necrotic and green shoots; 4. medium, leaves up to
- 50% necrotic and green shoots;
- shoots.

Biomass estimation

Results and discussions


Genetype Characteristic Control


The effect of genotype and experimental variant on stool main characteristics in *Salix* sp. (Fisher Test)


SDMI (shoot dry mass index), RDMI (root dry mass index) and vitality in hydroponic heavy metal experiment

Factor	Analysis of Variance						
	1- genotype; 2- experimental variant (Marked effects are significant at p < .0500						
	F	р	Significan				
1	1.422930	0.235982					
2	1.332255	0.226590					
1 x 2	1.282691	0.140198					
1	21.947560	0.000000	***				
2	9.528862	0.000000	***				
1 x 2	6.137076	0.000000	***				
1	4.268380	0.005652	**				
2	3.284458	0.001291	**				
1 x 2	4.556421	0.000000	***				
1	2.702220	0.045638	*				
2	5.681693	0.000001	***				
1 x 2	4.556421	0.000000	***				
	1 2 1x2 1 2 1x2 1 2 1x2	1- genotype; 2- (Marked effects are F) 1	1- genotype; 2- experimenta (Marked effects are significant at F p 1 1.422930 0.235982 2 1.332255 0.226590 1 x 2 1.282691 0.140198 1 21.947560 0.000000 2 9.528862 0.000000 1 x 2 6.137076 0.000000 1 x 2 6.137076 0.000000 1 4.268380 0.005652 2 3.284458 0.001291 1 x 2 4.556421 0.000000 1 x 2 4.556421 0.000000 2 5.681693 0.000001				

	Genotype	Characteristic	Control	Ca		Cu		N.		PD	
	-			1	2	1	2	1	2	1	2
D CE	RI	SDMI	2.80	2.26	2.29	1.33	1.47	1.59	1.91	2.47	2.09
		RDMI	1.08	0.50	0.41	0.74	0.78	0.47	0.44	0.86	0.53
	Sf_P	Ratio S/R	6.00	5.00	5.70	1.83	1.90	3.80	4.53	2.93	3.97
		Vitality	5	5	5	3	2	4	3	5	5
	Sf_B	SDMI	3.63	3.20	3.01	1.58	1.97	2.03	1.60	3.65	2.51
		RDMI	0.39	0.33	0.41	0.74	1.01	0.32	0.33	0,97	0.51
		Ratio S/R	9.33	9.87	7.83	2.13	2.27	6.67	5.00	4,13	5.00
		Vitality	5	5	5	4	3	3	2	5	5
	Sp_P	SDMI	4.22	1.97	2.12	1.42	1.61	1.19	1.32	2.36	1.21
		RDMI	0.65	0.30	0.50	0.50	0.64	0.16	0.16	0.70	0.21
		Ratio S/R	6.50	6.83	6.53	2.97	2.67	7.67	8.67	3.37	7.00
		Vitality	5	4	4	1	1	3	1	4	3
	St_P	SDMI	2.18	3.28	3.59	2.41	1.99	1.90	2.98	4.63	4.54
		RDMI	0.15	0.53	0.59	1.02	0.93	0.46	0.40	1.17	1.23
		Ratio S/R	15.17	6.27	6.13	2.63	2.13	4.40	7.77	4.13	4.40
		Vitality	5	5	5	4	3	3	3	5	5

The variation of enzymatic activity, catalase (CAT) and peroxidase (POX) in cadmium, copper and lead

Conclusions

- The biometric characters varied significantly with genotype and experimental variants.
- >The behavior of willow cuttings varied according to heavy metal (cadmium, copper, nickel ad lead) level.
- The enzymatic activity varied according to with stress abiotic factor and also with genotype

Acknowledgement

The financial assistance from MEN UEFISCDI, Programme PN II 2014- 2017 (project no. 111 SAROSWE) is gratefully acknowledged